Метод обогащения по крупности. Обогащение по крупности и форме

Главная / Штрафы

К специальным методам обогащения относятся процессы, основанные на использовании разницы в цвете и блеске, в твердости, в интенсивности различных видов физических излучений, в способности минералов растрескиваться при нагревании.

Наиболее широкое распространение среди специальных методов получили методы сортировки или рудоразборки, которые основаны на различиях излучения в оптической области спектра (оптические методы) , в области радиометрического излучения (радиометрическая сортировка).

Эти процессы применяются, как правило, при предварительной классификации руды с целью выделения продукта с отвальным содержанием ценного компонента, при выходе которого более 20…25% использование этих процессов становятся экономически целесообразным. Они отличаются высокой производительностью, эффективностью, низкими расходами электроэнергии, воды, топлива и экологичностью.

Сортировка по цвету и отражательной способности применяется для выделения алмазов, золота, драгоценных камней, урановых минералов.

Ручная сортировка в настоящее время применяется в очень ограниченных масштабах, т.к. отличается большой трудоемкостью. Она используется на предприятиях небольшой производительности и достаточно высокой стоимости продуктов обогащения (алмазы, драгоценные камни). Сортировку руды производят непосредственно в забое (в шахте) или уже на поверхности на специальных рудоразборных конвейерах при крупности материала от 10 до 300 мм. Эффективность такой сортировки зависит от различия в цвете кусков породы и ценных минералов. Примером использования процесса ручной сортировки могут быть крупнокристаллические сподуменовые и берилловые руды, в которых сподумен (литиевый минерал) и бериллийсодержащие минералы (изумруд, хризоберилл) сильно отличаются от минералов вмещающих пород не только по цвету и блеску, но и по форме.

Механическая сортировка по цвету, блеску и отражательной способности используется в фотометрической и люминесцентной сепарации, которые являются более производительными и эффективными, нежели ручная сортировка.

При фотометрической сортировке с применением фотоэлемента движущиеся по ленточному конвейеру куски руды освещаются источником света. В зависимости от интенсивности отраженного света, попадающего на фотоэлемент, возникает электрический ток, который затем усиливается и приводит в действие механизм отклоняющего шибера, который сбрасывает куски в отсек для концентрата или в отсек для хвостов (рис. 141).

Рис.141. Схема фотолюминисцентного сепаратор

1 – питатель; 2 –светонепроницаемый кожух сортирующего узла; 3 – источник ультрафиолетового излучения; 4 –линза; 5 – светофильтры; 6 –фотодатчики; 7 –светофильтры; 8 –электромагнитные шиберы; 9 - фотометр

Фотометрический метод применяется при предварительном обогащении, например, золото-кварцевых руд, бериллийсодеражщих руд.

Люминесцентный метод основан на способности некоторых минералов люминесцировать под влиянием внешних воздействии (ультрафиолетовых и рентгеновских лучей), которые возбуждают в минералах сильную люминесценцию. Такие сепараторы используются для обогащения алмазосодержащих руд. В рентгено-люминесцентных сепараторах используется свечение алмазов под действием рентгеновских лучей. При прохождении алмаза через зону просвечивания в фотоумножителе появляется импульс тока, который заставляет срабатывать механизм, перемещающий приемную воронку под желоб для алмазов. При прохождении через зону просвечивания минералов вмещающих пород такого импульса не появляется и минералы уходят в хвосты.

Современные высокоскоростные оптические сепараторы способны различить тысячи оттенков различных цветов и имеют производительность от 12 т/ч при крупности питания 2…35 мм до 450 т/ч при крупности исходной руды 400 мм. Эти сепараторы способны производить обогащение руды крупностью до 1 мм.

Наиболее широкое промышленное применение получили методы, использующие природную или наведенную радиактивность. Интенсивность гамма-излучений и бета-излучений используется при обогащении радиоактивных руд, содержащих уран и торий. Основанная на этих излучениях радиометрическая сортировка осуществляется в сепараторах, которые состоят из следующих конструктивных узлов: транспортирующего устройства, радиометра, разделяющего механизма и питателя. Питателем руда подается на транспортирующее устройство, который подает руду к разделяющему механизму. Радиометр регистрирует гамма- излучение при движении руды через сепаратор и управляет механизмом, разделяющим руду на продукты обогащения. По типу транспортирующих устройств сепараторы разделяются на ленточные, вибрационные, ковшовые и карусельные. Наиболее простыми являются ленточные сепараторы с электромеханическим разделяющим механизмом шиберного типа (рис. 142). Многоканальные ленточные сепараторы имеют несколько каналов с датчиками и разделяющими механизмами и могут одновременно производить обогащение нескольких потоков руды.

Рис. 142. Схема ленточного радиометрического сепаратора с электромеханическим разделителем

1 – ленточный конвейер; 2 – датчик радиометра; 3 –шибер; 4 – электромагнит; 5 – экран; 6 –радиометр

Радиометрическая сортировка бывает трех видов: кускова, порционная и поточная. При кусковой и порционной сортировке материал разделяется на куски или порции, которые раздельно подаются в зону разделения активности. При поточной сортировке через зону измерения непрерывным потоком проходит вся рудная масса, а за условную порцию принимается то количество руды, которое находится в данный момент под датчиком. Такая сортировка применяется при обогащении бедных руд. При кусковой сортировке осуществляется классификация по зкой школе с отмывкой глины и шламов.

Наглядным примером порционной сортировки являются радиометрические контрольные станции, в которых интенсивность излучения проводится в емкостях – вагонетках, скипах, думпкарах и автомашинах. Эти большеобъемные емкости помещаются между датчиками радиометра, регистрирующего интенсивность ее гамма-излучения и в соответствии с установленным эталонным графиком определяется содержание урана в порции руды с последующим направлением ее в цикл обогащения богатой рядовой или бедной руды (рис. 143)

Рис. 143. Технологическая схема радиометрическогообогащения

урановой руды

Эффективность радиометрического обогащения определяется прежде всего контрастностью руды – распределением урана между отдельными кусками руды. Если контрастность отсутствует, значит минералы урана распределены равномерно во всех кусках и радиометрическая сепарация при данной крупности материала не позволит произвести обогащение. Контрастность можно характеризовать показателем контрастности, который характеризует относительное отклонение ценного компонента в кусках руды от среднего содержания этого компонента, т.е.

Где М – показатель контрастности (0…2); α – среднее содержание ценного компонента в руде,%; у – среднее содержание ценного компонента в отдельных кусках пробы, % ; q – масса куска в общей массе пробы, доли ед.

Фотонейтронный метод сортировки основан на измерении интенсивности искусственного нейтронного излучения. Этот метод применяется при обогащении литиевых, бериллиевых, урановых, оловянных руд.

Обогащение по твердости применяется в процессе избирательного измельчения, которое основано на различной твердости минералов, входящих в состав руд, например, бериллиевых. При избирательном измельчении применяются мельницы с центральной разгрузкой, мелкие шары или галя, снижается частота вращения мельницы. При избирательном измельчении бериллиевых руд легко измельчающиеся частицы минералов вмещающих пород (тальк, слюды) отделяются от бериллийсодержащих минералов, имеющих твердость от 5,5 до 8,5, на грохотах или спиральных классификаторах. На второй стадии классификации применяются гидроциклоны, центрифуги или сепараторы (рис. 144).

Рис. 144. Схема обогащения берилливой руды методои избирательного измельчения

Обогащение бериллиевых руд избирательным измельчением применяется перед флотацией для удаления в хвосты хрупких минералов, обладающих низкой твердостью, содержание которых в рудах доходит до 70…80%. Степень обогащения берилла в этом случае составляет 2…4 (иногда 8…10) при извлечении его 70…90% в песковую фракцию.

Декрипитация – это свойство некоторых минералов растрескиваться и разрушаться при нагревании и последующем охлаждении. Этот процесс применяется, например, при обогащении литиевых руд, в которых литиевый минерал сподумен, находящийся в виде α – модификации, при нагревании до 950…1200˚С переходит в β – модификацию и разрушается. Минералы вмещающих пород при этом свою крупность не изменяют. Обжиг руды производят обычно в барабанных печах в течение 1…2 часов. Затем охлажденная руда измельчается в шаровой мельнице с резиновой футеровкой, а из мельницы направляется на грохочение или воздушную сепарацию для отделения мелкого порошкообразного сподуменового концентрата от крупных кусков породы (рис. 145).

Рис. 145. Схема обогащения сподуменовой руды

методом декрипитации

Растрескиваются при нагревании и превращаются в порошок такие минералы, как кианит, барит, флюорит, в то время как кварц практически не разрушается, поэтому при грохочении обожженной руды концентрируется в крупных классах.

Для определения глистной инвазии, помимо соскоба и простого анализа кала, используют методы обогащения, основанные на концентрации яйцеглистов в растворах. Анализ кала методом обогащения в 10-15 раз лучше других методов справляется с поиском яиц гельминтов в фекалиях. Особенно это важно для ранней диагностики, потому что на начальной стадии гельминтоз лечить значительно легче. В профилактических целях сдавать кал методом обогащения рекомендуется всем, кто находится в группе риска.

Что представляет собой метод?

Виды анализа и методика проведения

Метод обогащения Калантарян

Другие методы

Метод Бермана по обогащению кала при сдаче анализа на гельминты

Помогает выявить в кале личинки угрицы. Для эффективной диагностики лучше использовать еще теплый кал. В исследовании используется металлическая сетка, с мелкими делениями, помещенная в установленную на подставке стеклянную воронку. На дне воронки размещается резиновая трубочка с зажимом. В сетку помещают 5 грамм испражнений, поднимают и в воронку заливают теплую воду, пока низ сетки не погрузится в воду. Яйца гельминтов из-за термоактивности, сползаются к теплой воде и скапливаются на дне воронки. Спустя 4 часа, выпускают жидкость и помещают в центрифугу на 3 минуты. Оставшийся осадок подлежит микроскопическому изучению.

Метод обогащения по Красильникову

Для исследования применяют 1% раствор порошка для стирки «Лотос», в котором растворены каловые массы. При размешивании должна образоваться суспензия. 30 минут суспензия отстаивается, а затем помещается в центрифугу на 5 минут. В центрифуге яйца гельминтов очищаются от кала и выпадают в осадок, который исследуется под микроскопом.

Подготовка

  • За 2 дня до исследования не проводить очистительные клизмы, колоноскопию либо рентген желудка.
  • Накануне не употреблять жирную, копченую и жареную пищу.
  • В течение 3-х дней перед исследованием, при отсутствии противопоказаний, пропить желчегонное средство.
  • Вечером перед анализом не употреблять продукты, изменяющие цвет фекалий.
  • По возможности не принимать антибиотики, препараты железа и сорбенты.

Правила сбора биоматериала на анализ:

  • Перед сбором провести тщательное мытье внешних половых органов.
  • Заранее помочиться.
  • Сбор каловых масс осуществлять в специальный контейнер.
  • Пробы кала взять из 5-ти разных мест, в количестве 3-5 мл.
  • Следить, чтобы в анализ не попала урина и вода.
  • Образец для исследования должен попасть на диагностику в течение дня сбора.

Обогащение - наиважнейшее промежуточное звено между добычей полезных ископаемых и использованием извлекаемых веществ.

Обогащение полезных ископаемых - совокупность процессов и методов концентрации минералов при первичной переработке твёрдых полезных ископаемых. При обгащении полезных ископаемых возможно получение как окончательных товарных продуктов (известняк, асбест, графит и др.), так и концентратов, пригодных для дальнейшей технически возможной и экономически целесообразной химической или металлургической переработки. В основе теории обогащения полезных ископаемых лежит анализ свойств минералов и их взаимодействий в процессах разделения - минералургия. Обогащение полезных ископаемых позволяет использовать комплексные и бедные руды; удешевить добычу полезных ископаемых применением высокопроизводительных способов сплошной выемки из массива, снизить транспортные расходы, т.к. часто перевозятся только концентраты, а не вся масса добытого сырья.

К обогащению полезных ископаемых относятся различные методы разделения минералов по физическим свойствам: прочности, форме, плотности, магнитной восприимчивости, электропроводности, смачиваемости, адсорбционной способности, поверхностной активности, но без изменения их агрегатно-фазового состояния, химического состава, кристаллохимической структуры.

Переработка полезных ископаемых на обогатительных фабриках включает ряд последовательных операций, в результате которых достигается отделение полезных компонентов от примесей. По своему назначению процессы переработки полезных ископаемых разделяют на подготовительные, основные (обогатительные) и вспомогательные (заключительные).

Все существующие методы обогащения основаны на различиях в физических или физико-химических свойствах отдельных компонентов полезного ископаемого. Существует, например, гравитационное, магнитное, электрическое, флотационное, бактериальное и др. способы обогащения.

Направление основано в 60-х годах 20 века заместителем директора института «Уралмеханобр» по научной части членом корреспондентом Академии Наук СССР Владимиром Ревнивцевым.

Специализация направления:

  • 1) разработка технологий для разделения руд и продуктов обогащения коренных и россыпных месторождений, содержащих минералы титана, железа, циркона, меди, золота, благородных и редких металлов, олова, марганца, полевого шпата, кварца;
  • 2) разработка технологий обогащения шлаков ферросплавного, алюминиевого производства с получением металлической составляющей.

Работы ведутся преимущественно на базе сухих магнитных, электрических и воздушных сепараторов. В отдельных случаях (например, для россыпных месторождений), используются гравитационные методы обогащения для получения коллективного концентрата с последующей «сухой» доводкой. Разрабатываются полностью сухие схемы и установки для применения в безводных районах.

За 50 лет работы в данной области учёными наработан ценнейший материал, создано несколько поколений уникальных и высокопроизводительных вертикальных электрических сепараторов. Например, один вертикальный электрический сепаратор способен заменить от 5 до 50 горизонтальных аналогов, как отечественного, так и импортного производства.

На основе многочисленных данных научных исследований и результатов сотен промышленных испытаний, проведённых на ряде горно-обогатительных комбинатов и месторождений стран СНГ, электросепарация везде подтверждает свою универсальность, эффективность и неограниченные технологические возможности.

Кроме того, использование сухих методов обогащения в условиях низких температурах, создаёт возможность для круглогодичной работы приисков в северных и безводных районах.

Специальные методы обогащения:

  • - Ручная рудоразборка
  • - Радиометрическое обогащение
  • - Обогащение по трению и форме
  • - Обогащение по упругости
  • - Термоадгезионное обогащение
  • - Обогащение на основе селективного изменения размера куска

Рудоразборка

Ручная сортировкa - ручной отбор кусков руды крупностью 25-300 мм, или пустой породы, или вредных примесей из сортируемой рудной массы. Рудоразборка проводилась непосредственно при добыче под землёй, на старых отвалах, из горной массы, поступающей из подготовительных выработок, a также из общей рудной массы на обогатительных фабриках в качестве первой обогатительной операции.

Рудоразборка из-за высокой трудоёмкости почти не применяется и повсеместно заменена механизированными процессами разделения (напр., Радиометрическое обогащение, Обогащение в тяжелых средах). Известно использование рудоразборки при старательских методах добычи и переработки сырья, a также при сортировке драгоценных камней (ювелирных, ограночных), в т.ч. в качестве доводочных операций.

При рудоразборки руководствуются различиями в блеске, цвете и др. внешними признаках. Процесс рудоразборки трудоёмок, возрастает c уменьшением крупности разделяемого материала. Для повышения эффективности рудоразборки увеличивают контрастность обрабатываемого материала: промывка руды перед сортировкой, отделение мелких классов, равномерное освещение, облучение УФ-лучами, предварительная хим. обработка. Рудоразборку производят на неподвижной сортировочной площадке или на столе, a также на движущейся поверхности (ленточные и качающиеся конвейеры, рудоразборные столы).

Радиометрическое обогащение

Радиометрическое обогащение полезных ископаемыx основано на природной (естественной) радиоактивности руд, то есть способности минералов испускать, отражать или поглощать излучения. Условно к радиометрическому обогащению относят и методы, основанные на взаимодействии любого вида излучений c веществом горных пород и руд, от фотонов и ядерных частиц (гамма- и рентгеновские кванты, нейтроны и т.д.) до светового, инфракрасного излучения и радиоволн.

K радиометрическому обогащению относят:

  • 1) радиометрические методы (называемые в обогащении авторадиометрическими), основанные на измерении естественной радиоактивности горных пород и руд;
  • 2) гамма-методы (метод рассеянного гамма-излучения, или гамма-электронный метод, или эмиссионный; гамма-нейтронный метод, или фотонейтронный; метод ядерного гамма-резонанса, a также рентгенорадиометрический метод, если первичным является фотонное или гамма-излучение), основанные на взаимодействии гамма- или рентгеновских квантов или атомов элементов, входящих в состав горных пород и руд;
  • 3) нейтронные методы (нейтронно-абсорбционный, нейтронно-резонансный, нейтронный гамма-метод и нейтронно-активационный метод), основанные на эффектах взаимодействия нейтронного излучения c ядрами элементов, слагающих горные породы и руды;
  • 4) методы, основанные на взаимодействии нерадиоактивных излучений c минералами и горными породами, в т.ч. фотометрические, радиоволновые, радиорезонансные (в эту группу условно входят люминесцентный и рентгенолюминесцентный методы).

Разделительными признаками при радиометрическом обогащении являются спектральный состав и интенсивность первичных или вторичных излучений, возникающих в процессе таких взаимодействий. Эффективность применения того или иного метода радиометрического обогащения зависит от многих факторов, в т.ч. от физических способов, методики и аппаратурно-технических средств его реализации, от свойств руды (контрастности) и обогащаемого сырья, поставленных горнотехнологических задач и этапов рудоподготовки.

Mетоды радиометрического обогащения используются на горных предприятиях: на стадии детальной и эксплуатационной разведки месторождений для технологического картирования руд; оконтуривания рудных тел; оценки содержания в них полезных компонентов c целью получения исходных данных к подсчёту запасов и управлению процессом выемки руды из недр; на стадии взрывной отбойки для предварительной концентрации п. и. посредством уточнения контуров взрыва и порядка проведения работ; для предварительной сортировки товарных руд в навале, транспортных ёмкостях (вагоны, самосвалы, вагонетки) и потоках (ленты конвейера) после крупного и среднего дробления; для покусковой сепарации руд после среднего и мелкого дробления; для контроля технологического процесса на обогатительных фабриках посредством экспресс-анализа исходного сырья и продуктов обогащения (хвосты, питание, концентраты, промпродукты и т.д.).

Радиометрическое обогащение позволяет управлять качеством руд (систем рудоподготовки) благодаря высокой производительности и точности, удовлетворяющей требованиям производства, a также возможности автоматизации трудоёмких процессов. Наибольшей эффективностью обладают системы рудоподготовки, в которых методы радиометрического обогащения используются на всех этапах технологического процесса добычи и переработки руд, начиная от условий естественного залегания руд и кончая контролем конечной продукции предприятия и отходов производства, напр. на горных предприятиях, добывающих и перерабатывающих радиоактивные руды. Ведется работа по созданию аналогичных систем на месторождениях руд цветных, чёрных и редких металлов, a также нерудного сырья.

Обогащение по трению и форме

Обогащение по трению и форме основано на использовании различий в скоростях движения разделяемых частиц по плоскости под действием силы тяжести.

Скорость движения частиц по наклонной плоскости (при заданном угле наклона) зависит от состояния поверхности самих частиц, их формы, влажности, плотности, крупности, свойств поверхности, по которой они перемещаются, характера движения (качение или скольжение), а также среды, в которой происходит разделение.

Основным параметром, характеризующим минеральные частицы с точки зрения движения их по наклонной плоскости, является коэффициент трения.

Величина коэффициента трения определяется в основном формой минеральных частиц, которая, в свою очередь, зависит от характера месторождения (россыпные или коренные). Минеральные частицы россыпных месторождений, как правило, являются сферическими, а коренных - имеют неправильную (пластинчатую) форму (обломки).

Обогащение по трению будет тем благоприятнее, чем больше разница коэффициента формы для частиц пустой породы и полезных минералов. Коэффициент трения увеличивается с уменьшением крупности частиц, поэтому для эффективного разделения необходима узкая классификация материала по крупности. Обычно обогащение по трению применяют для материала крупностью - 100 - 10 (12) мм.

Пример: Различия в форме зёрен и коэффициенте трения позволяет отделять плоские чешуйчатые частички слюды или волокнистые агрегаты асбеста от частичек породы, которые имеют округлую форму. При движении по наклонной плоскости волокнистые и плоские частички скользят, а округлые зёрна скатываются вниз. Коэффициент трения качения всегда меньше коэффициента трения скольжения, поэтому плоские и округлые частички движутся по наклонной плоскости с разными скоростями и по разным траекториям, что создаёт условия для их разделения.

Обогащение по упругости

Обогащение по упругости основано на разнице траекторий, по которым отбрасываются частицы минералов, имеющие различную упругость, при падении на плоскость. Об упругости минералов судят по отношению h: Н, где h - высота отражения частицы, сбрасываемой с высоты Н на горизонтальную стеклянную пластину.

Коэффициент восстановления скорости К 2 =h/H. Минералы, имея разные значения коэффициента К, будут двигаться по разным траекториям, что и позволяет отделять их друг от друга. Разделение частиц по упругости применяется при обогащении строительных материалов (щебня и гравия для производства бетона высоких марок). Для обогащения гравия по упругости иногда применяют сепараторы с наклонной стальной плитой. Падая на плиту, более упругие частицы отражаются под большим углом с большей скоростью, а менее упругие и непрочные отражаются незначительно и попадают в соответствующие приемники.

Термоадгезионное обогащение

При термоадгезионном обогащении используют предварительный нагрев материала (например, с помощью ламп инфракрасного излучения) и транспортную ленту, покрытую термопластичным полимерным материалом или парафином. При этом разные по вещественному составу частицы нагреваются по-разному, вследствие чего по-разному пластифицируют находящийся под ними термочувствительный слой на ленте. Именно таким образом сульфидсодержащие, графитовые, хромитовые, турмалиновые и другие материалы, являющиеся «непрозрачными» и относительно сильно нагревающиеся, временно адгезионно фиксируются на ленте. «Ненагревающиеся» же крупнокристаллические материалы (типа галита, сильвина, криолита, флюорита, кварцита, кальцита) удаляются с движущейся ленты свободно.

Обогащение на основе селективного изменения размера куска

Ряд горных пород обладает свойством контрастного изменения размеров составляющих компонентов при разрушении. При разрушении (например, дроблении) этих горных пород происходит не только раскрытие (т.е. разъединение зерен компонентов, образующих горную породу), но и одновременно размеры частиц полезного компонента оказываются существенно отличными от размеров частиц других компонентов (пустой породы). Для таких горных пород обогащение может быть сведено к разделению по размерам частиц. Размер частиц становится косвенным признаком их вещественного состава.

Избирательное дробление применимо для полезных ископаемых, имеющих крупные агрегаты ценного компонента, которые отличаются по прочности от вмещающих пород. К таким полезным ископаемым следует отнести угли, бурожелезняковые руды, железные руды КМА, асбестсодержащие руды, калийные руды и некоторые другие.

Наибольшее распространение в практике переработки углей получили дробилки полужесткого дробления (барабанные дробилки). Они имеют техническую характеристику: диаметр - 2,2-3,5 м.; длину барабана - 2,8-5,6 м.; число оборотов-10-16 в минуту; производительность 130-160 т/ч.

Главные направления развития обогащения полезных ископаемых: совершенствование отдельных процессов обогащения и применение комбинированных схем с целью максимального повышения качества концентратов и извлечения полезных компонентов из руд; увеличение производительности отдельных предприятий путём интенсификации процессов и укрупнения оборудования; повышение комплексности использования полезных ископаемых с извлечением из них ценных компонентов и утилизацией отходов (чаще всего для производства строительных материалов); автоматизация производства.

Одна из важных задач - сведение к минимуму загрязнения окружающей среды за счёт использования оборотной воды и более широкого применения сухих методов обогащения.

Масштаб использования полезных ископаемых непрерывно возрастает, а качество руд систематически ухудшается. Снижается содержание в рудах полезных минералов, ухудшается их обогатимость, возрастает зольность углей. Всё это предопределяет дальнейшее увеличение роли обогащения полезных ископаемых в промышленности.

экологический обогащение ископаемое

Список используемой литературы

  • 1. Деркач В.Г. Специальные методы обогащения полезных ископаемых. М: Изд-во Недра, 1966. 338 с.
  • 2. Горная энциклопедия. - М.: Советская энциклопедия. Под редакцией Е.А. Козловского. 1984-1991.
  • 3. Mокроусов B.A., Гольбек Г. P., Aрхипов O.A., Tеоретические основы радиометрического обогащения радиоактивных руд, M., 1968;
  • 4. Mокроусов B.A., Лилеев B.A., Pадиометрическое обогащение нерадиоактивных руд, M., 1979;
  • 5. Aрхипов O.A., Pадиометрическая обогатимость руд при их разведке, M., 1985.
  • 6. Кравец Б.Н. Специальные и комбинированные методы обогащения: Учебник для вузов. М: Изд-во Недра, 1984. 304 с.

Специальные методы классифицируются на следующие виды: 1. Магнитное и электрическое обогащение; 2. Сортировка; 3.Обогащение с использованием эффектов взаимодействия кусков разделяемых компонентов с рабочей поверхностью сепаратора; 4.Обогащение на основе селективно направленного изменения размеров кусков компонентов полезного ископаемого; 5.Обогащение на основе разницы в поверхностных свойствах разделяемых минералов.

1)Магнитное обогащение (магнитная сепарация) основано на использовании различий в магнитных свойствах компонентов разделяемой мех. смеси с размером частиц до 100, иногда до 150 мм в неоднородном постоянном или переменном магн. поле. Процесс осуществляют в водной или воздушной среде в валковых, барабанных, роторных и иных магн. сепараторах. Магн. сепарацию широко применяют при обогащении железных, марганцевых, медно-никелевых руд и руд редких металлов.

Электрическое обогащение (электрическая сепарация) основано на различии в электрич. св-вах компонентов ископаемого сырья.

Барабанный электростатический сепаратор: 1-бункер для исходного материала; 2-заряженный барабан; 3-ци-линдрич. электрод; 4-устройство для очистки барабана; 5-7-приемники соотв. для непроводников, полупроводников и проводников. 2)СОРТИРОВКА ПОЛЕЗНЫХ ИСКОПАЕМЫХ. К основным способам сортировки относятся: 1.Ручная сортировка (породовыборка, рудоразборка, углесортировка). Ручная сортировка применяется когда не могут быть применены механическое или химическое обогащение; когда механические процессы не обеспечивают необходимого качества разделения, 2.Механизированная сортировка, включающая процессы с общим названием радиометрические методы обогащения.3)ОБОГАЩЕНИЕ С ИСПОЛЬЗОВАНИЕМ ЭФФЕКТОВ ВЗАИМОДЕЙСТВИЯ КУСКОВ РАЗДЕЛЯЕМЫХ КОМПОНЕНТОВ. 1.Обогащение по упругости; 2.Обогащение по трению; 3.Комбинированное обогащение по трению и упругости; 4.Обогащение по форме; 5.Термоадгезионный метод обогащения; 6.Обогащение на жировых поверхностях.4.Обогащение на основе селективно направленного изменения размеров кусков компонентов полезного ископаемого ; 1.Избирательное дробление-применимо для полезных ископаемых, имеющих крупные агрегаты ценного компонента, которые отличаются по прочности от вмещающих пород. 2.Избирательное измельчение- как и избирательное дробление, использует различия в прочности компонентов полезного ископаемого. 3.Промывка полезных ископаемых- используется при обогащении рассыпных месторождений редких и благородных металлов, руд черных металлов (железа, марганца), фосфоритов, каолинов, стройматериалов (песка, щебня), флюсов и т.д.

4.Оттирка полезных ископаемых-используют при переработке стекольных песков, горного хрусталя, полевых, хромитовых шпатов, хромитовых концентратов, искусственных минералов, а также при подготовке к флотации углей. 5.Декрипитационное разрушение-избирательное раскрытие, основанное на способности отдельных минералов разрушаться по плоскостям спайности при нагревании и последующем быстром охлаждении или только при нагревании. 6.Термохимическое разрушение- применяют для руд, породная часть которых представлена карбонатами, например, кальцитом, магнезитом, сидеритом, а ценный компонент при этом представлен термически устойчивыми минералами - пирохлором, фторапатитом и др. 7.Изменение размеров частиц с помощью термообработки- заключается в нагревании обрабатываемого продукта до температуры плавления серы, образования водной эмульсии и последующего ее охлаждения.

5)ОБОГАЩЕНИЕ НА ОСНОВЕ РАЗНИЦЫ В ПОВЕРХНОСТНЫХ СВОЙСТВАХ РАЗДЕЛЯЕМЫХ МИНЕРАЛОВ

Селективная коагуляция- объединение частиц дисперсной фазы в агрегаты вследствие сцепления (адгезии) частиц при их соударениях.

Селективная флокуляция-совокупность процессов выборочной агрегации тонкодисперсных частиц полезных ископаемых в микрофлокулы крупностью 100-300 мкм с помощью реагентов -флокулянтов различной природы.

Адгезионное обогащение- этот способ обогащения основан на избирательном адгезионном взаимодействии извлекаемого компонента сгидрофобной поверхностью в водной

Амальгамация - метод извлечения металлов из руд растворением в ртути. Амальгаму отделяют от пустой породы и ртуть отгоняют.

7. Что подразумевается под терминами химическое и радиометрическое обогащение?

8. Что называется обогащением по трению, декрипитацией?

9. Какие формулы технологических показателей обогащения?

10. Какова формула степени сокращения?

11. Как вычислить степень обогащения руды?

Темы семинаров:

Основная характеристика методов обогащения.

Основные отличия от подготовительных, вспомогательных и основных методов обогащения.

Краткая характеристика основных методов обогащения.

Краткая характеристика подготовительных и вспомогательных методов обогащения.

Степень сокращения проб, основная роль данного метода при обогащении полезных ископаемых.

Домашнее задание :

Изучить термины, правила и основные методы обогащения, закрепить, полученные знания на семинарском занятии самостоятельно.

ЛЕКЦИЯ №3.

ТИПЫ И СХЕМЫ ОБОГАЩЕНИЯ И ИХ ПРИМЕНЕНИЕ.

Цель: Объяснить студентам основные типы и схемы обогащения и применение таких схем на производстве. Дать понятие о методах и процессах обогащения полезных ископаемых.

План:

Методы и процессы обогащения полезных ископаемых, область их применения.

Обогатительные фабрики и их промышленное значение. Основные типы технологических схем.

Ключевые слова: основные процессы, вспомогательные процессы, подготовительные методы, применение процессов, схема, технологическая схема, количественная, качественная, качественно-количественная, водно-шламовая, схема цепи аппаратов.

1. На обогатительных фабриках полезные ископаемые подвергаются последовательным процессам переработки, которые по назначению в технологическом цикле фабрики разделяются на подготовительные, собственно обогатительные и вспомогательные.

К подготовительным операциям обычно относят дробление, измельчение, грохочение и классификацию, т.е. процессы, в результате которых достигается раскрытие минерального состава, пригодной для их последующего разделения в процессе обогащения, а так же операции усреднения полезных ископаемых, которые могут проводиться на рудниках, карьерах, в шахтах и на обогатительных фабриках. При дроблении и измельчении достигается уменьшение крупности кусков руды и раскрытие минералов в результате разрушения сростков полезных минералов с пустой породой (или сростков одних ценных минералов с другими). Грохочение и классификация применяются для разделения по круп­ности полученных при дроблении и измельчении механических сме­сей. Задача подготовительных процессов - доведение минерального сырья до крупности, необходимой для последующего обогащения.



К основным обогатительным операциям относят те физические и физико-химические процессы разделения минералов, при которых полезные минералы выделяются в концентраты, а пустая порода – в хвосты.К основнымобогатительным процессам, относятся процессы разделения минералов по физическим и физико-химическим свойствам (по фор­ме, плотности, магнитной восприимчивости, электропроводности, смачиваемости, радиоактивности и др.): сортировка, гравитация, магнитное и электрическое обогащение, флотация, радиометриче­ское обогащение и др. В результате проведения основных процессов получают концентраты и хвосты. Применение того или другого спо­соба обогащения зависит от минералогического состава руды.

К вспомогательным процессам относят процедуры удаления влаги из продуктов обогащения. Такие процессы называются обезвоживанием, которое проводится с целью доведения влажности продуктов до установленных норм.

На обогатительной фабрике исходное сырье при обработке подвергается ряду последовательных технологических операций. Графическое изображение совокупности и последовательности этих операций так же называют технологической схемой обогащения.

При обогащении полезных ископаемых используют различия их физических и физико-химических свойств, существенное значение из которых имеют цвет, блеск, твердость, плотность, спайность, излом и т.д.

Цвет минералов разнообразен. Различие в цвете используется при ручной рудоразборке или пробовыборке из углей и других видах обработки.

Блеск минералов определяется характером их поверхностей. Различие в блеске можно использовать, как и в предыдущем случае, при ручной рудоразборке из углей или пробовыборке из углей и других видах обработки.

Твердость минералов, входящих в состав полезных ископаемых, имеет важное значение при выборе способов дробления и обогащения некоторых руд, а так же углей.

Плотность минералов изменяется в широких пределах. Различие в плотности полезных минералов и пустой породы широко используется при обогащении полезных ископаемых.

Спайность минералов заключается в их способности раскалываться от ударов по строго определенному направлению и образовывать по плоскостям раскола гладкие поверхности.

Излом имеет существенное практическое значение в процессах обогащения, так как характер поверхности минерала, полученного при дроблении и измельчении, оказывает влияние при обогащении электрическими и другими методами.

2. Технология обогащения полезных ископаемых состоит из ряда последовательных операций, осуществляемых на обогатительных фабриках.

Обогатительными фабриками называют промышленные предприятия, на которых методами обогащения обрабатывают полезные ископаемые и выделяют из них один или несколько товарных продуктов с повышенным содержанием ценных компонентов и пониженным содержанием вредных примесей. Современная обогатительная фабрика – это высокомеханизированное предприятие со сложной технологической схемой переработки полезного ископаемого.

Совокупность и последовательность операций, которым под­вергается руда при переработке, составляют схемы обога­щения, которые принято изображать графически

Технологическая схема включает сведения о последовательности технологических операций по переработки полезных ископаемых на обогатительной фабрике.

Качественная схема содержит сведения о качественных измерениях полезного ископаемого, в процессе его переработки, а так же данные о режиме отдельных технологических операций. Качественная схема (рис. 1.) дает представление о приня­той технологии переработки руды, последовательности процессов и операций, которым подвергается руда при обогащении.

рис. 1. Качественная схема обогащения

Количественная схема включает количественные данные о распределении полезного ископаемого по отдельным технологическим операциям и выход получаемых продуктов.

Качественно–количественная схема совмещает в себе данные качественной и количественной схем обогащения.

Если в схеме имеются данные о количестве воды в от­дельных операциях и продук­тах обогащения, о количестве добавляемой воды в процесс, то схема называется шламовой. Распределение твердого и воды по операциям и продуктам ука­зывается в виде отношения твердого к жидкому Т: Ж, например, Т: Ж = 1: 3, или в процентах твердого, например 70% твердого. Соотношение Т:Ж численно равно коли­честву воды (м³), приходящейся на 1 т твердого. Количество воды, добавляемой в отдельные операции, выражается в куби­ческих метрах в сутки или в ку­бических метрах в час. Часто эти виды схем совмещаются и тогда схема называется качественно-количественной шламовой.

Вводно-шламовая схема содержит данные о соотношении воды и твердого в продуктах обогащения.

Схема цепи аппаратов – графическое изображение пути движения полезного ископаемого и продуктов обогащения через аппараты. На таких схемах аппараты, машины и транспортные средства изображаются условно и указывается их число, тип и размер. Движение продуктов от агрегата к агрегату обозначается стрелками (см. рис.2):

Рис. 2. Схема цепи аппаратов:

1,9- бункер; 2, 5, 8, 10, 11 - транспортер; 3, 6 - грохоты;

4 - щековая дробилка; 7 - конусная дробилка; 12 - классификатор;

13 - мельница; 14 - флотомашина; 15 - сгуститель; 16 - фильтр

По схеме на рисунке видно подробно, как руда проходит полное обогащение, включая подготовительные и основные процессы обогащения.

В качестве самостоятельных процессов чаще всего применяют флотацию, гравитационные и магнитные методы обогащения. Из двух возможных методов, дающих одинаковые показатели обогащения, обычно выбирают наиболее экономичный и экологически безопасный метод.

Выводы:

Процессы обогащения подразделяются на подготовительные, основные вспомогательные.

При обогащении полезных ископаемых используют различия их физических и физико-химических свойств, существенное значение из которых имеют цвет, блеск, твердость, плотность, спайность, излом и т.д.

Совокупность и последовательность операций, которым под­вергается руда при переработке, составляют схемы обога­щения, которые принято изображать графически. В зависи­мости от назначения схемы могут быть качественными, количе­ственными, шламовыми. Кроме указанных схем обычно соста­вляют схемы цепи аппаратов.

В качественной схеме обогащения изображается путь движе­ния руды и продуктов обогащения последовательно по операциям с указанием некоторых данных о качественных изменениях руды и продуктов обогащения, например, крупности. Качественная схема дает представление о стадиальности процесса, коли­честве перечистных операций концентратов и контрольных пере­чисток хвостов, о виде процесса, способе обработки промпродуктов и количестве конечных продуктов обогащения.

Если на качественной схеме указать количество перерабаты­ваемой руды, получаемых в отдельных операциях продуктов и со­держание в них ценных компонентов, то схема уже будет назы­ваться количественной или качественно-количественной.

Совокупность схем дает нам полное понятие о происходящем процессе обогащения и переработки полезных ископаемых.

Контрольные вопросы:

1. Что относится к подготовительным, основным и вспомогательным процессам обогащения?

2. Какие различия в свойствах минералов используются при обогащении полезных ископаемых?

3. Что называют обогатительными фабриками? Каково их применение?

4. Какие типы технологических схем Вы знаете?

5. Что такое схема цепи аппаратов.

6. Что означает качественная схема технологического процесса?

7. Как Вы можете охарактеризовать качественно-количественную схему обогащения?

8. Что означает водно-шламовая схема?

9. Какие характеристики можно получить, следуя технологическим схемам?

© 2024 vikavto68.ru -- Автомобильный портал - Vikavto68